Maximal spacelike surfaces in a certain homogeneous Lorentzian 3-manifold
نویسندگان
چکیده
The 2-parameter family of certain homogeneous Lorentzian 3-manifolds, which includes Minkowski 3-space and anti-de Sitter 3-space, is considered. Each 3-manifold in the has a solvable Lie group structure with left invariant metric. A generalized integral representation formula for maximal spacelike surfaces 3-manifolds obtained. normal Gauß map its harmonicity are discussed.
منابع مشابه
Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms
Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...
متن کاملTwistorial constructions of spacelike surfaces in Lorentzian 4-manifolds
We investigate the twistor space and the Grassmannian fibre bundle of a Lorentzian 4-space with natural almost optical structures and its induced CR-structures. The twistor spaces of the Lorentzian space forms R 4 1, S 4 1 and H 4 1 are explicitly discussed. The given twistor construction is applied to surface theory in Lorentzian 4-spaces. Immersed spacelike surfaces in a Lorentzian 4-space wi...
متن کاملMaximal Complexifications of Certain Riemannian Homogeneous Manifolds
Let M = G/K be a Riemannian homogeneous manifold with dimCG C = dimRG , where G C denotes the universal complexification of G. Under certain extensibility assumptions on the geodesic flow of M , we give a characterization of the maximal domain of definition in TM for the adapted complex structure and show that it is unique. For instance, this can be done for generalized Heisenberg groups and na...
متن کاملMaximal Complexifications of Certain Homogeneous Riemannian Manifolds
Let M = G/K be a homogeneous Riemannian manifold with dimCGC = dimRG, where GC denotes the universal complexification of G. Under certain extensibility assumptions on the geodesic flow of M , we give a characterization of the maximal domain of definition in TM for the adapted complex structure and show that it is unique. For instance, this can be done for generalized Heisenberg groups and natur...
متن کاملWillmore spacelike submanifolds in a Lorentzian space form
Let N p (c) be an (n+p)-dimensional connected Lorentzian space form of constant sectional curvature c and φ : M → N p (c) an n-dimensional spacelike submanifold in N p (c). The immersion φ : M → N p (c) is called a Willmore spacelike submanifold in N p (c) if it is a critical submanifold to the Willmore functional W (φ) = ∫
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry
سال: 2021
ISSN: ['0047-2468', '1420-8997']
DOI: https://doi.org/10.1007/s00022-021-00591-6